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ABSTRACT
AN

We obtain equations for the time and space develop;;Lﬂizf a small
number of large amplitude transverse and longitudinal modes: in a Vlasov plasma.
The scale times and lengths are inversely proportional to the first power of
the electric fields. For the special case of two transverse modes and a single
resonantly driven longitudinal oscillation, we first classify systems accord-
ing to the manner in which the size of the longitudinal field is limited, and
then solve for the resulting mode evolution. As a result of the non-linear
coupling, frequency conversion and polarization rotation effects appear.
Qualitative differences are found for the behavior in one and two independent
coordinates. In most (but not all) cases treated, the mode interactions cause

changes in the electric field amplitudes rather than shifts in resonant

}
frequencies and wave lengths. @}i}ﬁhd



I. INTRODUCTION

In this paper we study the resonant coupling of a small number of
transverse and longitudinal waves in a Vlasov plasma of electrons embedded in

a uniformly smeared out background of positive charge.

The problem differs from earlier problems treated by the quasi-linear

1,2,3,4 due to the differences in the time scales

theory of the Vlasov equation
involved. 1In this problem, because of the presence of only a small number of
modes, the rate of change of the modes is proportional to the strength of the
amplitudes, while the spatially homogeneous part of the one-particle distri-
bution function changes at a rate proportional to the square of the amplitudes.
On the other hand, in earlier problems treated by quasi-linear theory, very

many modes are present with random phases. Because of the random phase

approximation, both the modes and the spatially homogeneous part of the one-

particle distribution function vary at rates which are proportional to the square

of the amplitudes.

We obtain a set of coupled, first-order partial differential equations
for the amplitudes of the modes. The equations take into account simultaneously
several mechanisms which may modify the longitudinal field: linear Landau
damping, detuning, and nonlinear effects in space and time due to resonant mode

coupling. In addition collisional damping effects are assumed to be additive

to linear Landau damping effects. We confine our analysis to situations in which

the transverse fields vary through mode-mode coupling, since otherwise resonant

interaction effects are weak.
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Similar equations (though not based on the Vlasov equation) have been

derived by several authorss’6’7

However, they usually neglect one or more of
the modifying mechanisms, such as the Landau or collisional damping, and/or
they consider only nonlinear effects in time, leaving out nonlinear effects

in space.

In section (IIA) we define a physical system whose behavior is governed
by the nonlinear Vlasov equation coupled with Maxwell's equations. In section
(IIB) we seek a perturbation theoretic solution of this system of equations. In
section (IIC) we obtain differential equations for the amplitudes of the electric
field of the plasma modes which follow from the prescription that all secular
terms cancel, and in section (IID) we particularize our considerations to the
case of two transverse oscillations impinging on the plasma and the resulting

driven longitudinal disturbance.

Then in section (IIIA) we obtain a set of conservation equations
governing the energy exchange among the modes of (IID). In (IIIB) we determine
limits on the size of the longitudinal disturbance of (IID), and the correspond-
ing length and/or time scales for change of the transverse modes due to mode-

mode coupling.

After this in IIIC, IIID, and IIIE we solve the differential equations
for the amplitudes explicitly for several special cases.which are grouped

according to the dominant limiting mechanism on the longitudinal mode.




IT. PLASMA AND ELECTROMAGNETIC FIELD EQUATIONS

A. THE NONLINEAR EQUATIONS

We assume that the plasma and the electromagnetic field are describable
by the Vlasov equation coupled with the Maxwell equations:
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where all of the symbols have their usual meaning.



B. CHOICE OF PERTURBATION EXPANSION

We wish to solve Eqs. (1) by means of an expansion in a small para-
meter ¢ , where € measures the departure of the system from the field-free
quiescent state:
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where fo(z) is the distribution function for the quiescent state.

According to the multiple time and spat§al scale sc:hemes,’9 we intro-

duce into the problem a set of time scales, toatystoseees and a set of

spatial scales, 50,51,52,..., defined such that to = t, tl = ¢t, t2 = ezt,...,

and X, =X, X} = €X, X, = 6235,..., . Any function of x and t is assumed

to be a function of x

X sX sXose ey to’tl’tZ’ ...y respectively.

Let us seek solutions to Eqs. (1) which can written in the form:

-_

f(x,v,t) = f(o)(x,g_ ,tl,...) + ef(l)(_}go,z,to,_)_c_l,tl,...) + ...

E@t) = V) (x e x D+ b (3)

1ptysee

B(x,t) = sB(l) (_)_{_o,to,gl,tl,...) + ...




The dependence of the functions on X, and t, has to be such that the Vlasov
and Maxwell equations be satisfied to orders 0(g), 0(82), ete.. The functional
dependence on X tl’ Xy t2, ete. gives us additional freedom of choice; and
we can use it to eliminate secular terms from the equations to order 0(82),

0(63), ete., 1.e. to as many orders as desired.

For the sake of simplicity, let us take g0 o f(o)(lgl,...) to

be an isotropic function of velocity.

Substituting the expansion (3) into Egs. (1), and writing all spatial
and time derivatives as derivatives with respect to Eo’to’-z{-l’tl’ ete., we obtain

the following equations:
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We shall look for steady state solutions on the "fast" scales, and
shall assume all functions of x and to to be expanded in Fourier series

with real wavenumbers and frequencies. Therefore we seek solutions of the form

£V fg)(zsl,tl,.--;z)
i(kex ~wt )
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: = -
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where v =1,2,... . This essentially means that _E(v) is undamped on the
scales specified by X, and to . Any damping, which may occur, proceeds -
at a rate of 0(e) , and is incorporated in the "slow'" time and space scale

dependence of the Fourier amplitudes.

From Eq. (4), to 0(e) and O(ez) s for k#0 and w # 0 we

obtain
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where n 1is a small positive number.

It will sometimes be convenient to consider the longitudinal and

transverse components of E( V) separately. We shall denote them by the
symbols E( V) and E( v) - respectively.
—Lkw —Tkw °

Substituting Eqs. (10) and (11) into Egs. (5) and (7), we obtain,

for k#0 and w# 0,
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2
he D.(kyw) =1 - CZkz - 'fR f(O) d the t dielectric
where D(k,0) = w2 © -k v +In v , e transverse dielec

function.

Since the quiescent state of the system is field-free, we require that

Eéié w=0 = 0. Hence the k=0 and w = 0 component of Eq. (4) yields
kg Al
Bf(o) v . af(o) 0
atl - 351
(0) (0) _
of _ of _ : (0) _ ((0)
We shall take 3t1 = Q&l = 0 . Therefore f = f (IgJ,gz,tz,ﬁg,t3,.

C. SECULAR TERMS IN THE LONGITUDINAL AND TRANSVERSE FOURIER COMPONENTS

Eq. (12) shows that secular terms appear in the longitudinal fields

when D. ~ 0(e) . They can be eliminated by choosing the dependence of the

L

0(e) 1longitudinal Fourier components on x, and t. such that the sum of

the terms involving derivatives with respect to

term.

eliminate

1 1

X and ty cancel the secular

To perform the two integrations on the right side of Eq. (12), we

(1)

(1)
£, and fk:h,,w_w. by means of Eqs. (10). We notice that the

nonlinear term contains only the coupling of transverse components,there being
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no terms involving the coupling of longitudinal components or the coupling of

longitudinal with transverse components.

We also notice that the two integrals on the right side of Eq. (12)
can be split up into two terms, a principal value integral of order €2 and
a pole contribution which detailed estimate shows to be of order 65/2. Since
the pole contribution is formally of higher order it will henceforth be
neglected. This neglect corresponds to the neglect of non-linear Landau
dampinglo. Since the general effect of the non-linear Landau damping is the
lessening of the total Landau damping from the linear valuell, by keeping the

linear value we obtain a lower bound for mode coupling effects when Landau

damping limits the size of the longitudinal components.

The principal value integrals are evaluated by expanding the integrands
in a power series in (Vo/(w/k)) . Only the lowest order non-vanishing terms

are retained.

Having evaluated the integrals on the right side of Eg. (12)
according to the procedure outlined above, we eliminate secular terms from
Eq. (12) by requiring that for k and w for which DL(E,w) v 0(e) the

longitudinal component of the electric field satisfy the equation.

(1D
JELL 2

Lkiv v 3
—_— ., 0 _9_ (1) iw” (1)

3t + k) B T Dpee) B
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3
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where
.1 e L2 . gD . gD
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the mode coupling term.

Eq. (13) shows that secular terms may arise in the transverse fields

when DT v 0(e) or smaller. They can be eliminated by choosing the dependence

of the transverse modes on % and ty such that the sum of the terms in Eq.

(13) involving derivates with respect to X and ty will cancel the secular
terms. Proceeding in a manner analogous to that which led to Eq. (14), we
eliminate secular terms from Eq. (13) by requiring that for k and w for

which DT(E,w) v 0(e) the transverse component of the electric field satisfy

the equation

(1)
BETEw c? 3 (1) _f; w
g, T ® e Emwtw (o2kT 4 o (16)
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where
(1) (@H)
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and Ikw is given by Eq. (15).

D. CHOICE OF LOWEST ORDER NON-VANISHING MODES

(L) _ (1)
Eq. (12) shows that when DL v 0(), ELK@ =0 3 —Lkw # 0 only

for those waves for which DL n 0(e) or smaller. Eq. (13) shows that

(l) # 0 only when D ~v 0(e) or smaller.

For the work to follow we take the transverse 0(g) field gél)

to be the superposition of two plane waves inside the plasma, <Z.e.

(17)
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+ Ey(xy,ty,.00) sin(k, * x -

y I .
where DT(gi,wl) = DT(EZ,wz) v 0, DL(El—gz,wl—wz) v 0(g), -and (El E

and (52 y EQ) are at most of 0(g)

for both polarizations of gﬁ , and similarly for ¢

In (18) we assume that

ce) = Ei(gl,tl,...) sin(gl i S Wt + ¢1(§1’t1""))

..)), (18)

w2t0 + ¢2(x1,t1,.
1)
¢l is the same

This assumption can

be made consistently for all cases for which we solve explicitly.

We note that the form of (18) allows in principle for externally

induced variations in the amplitudes and phases of the transverse modes.

Moreover, fourier-analyzing (18), according to Eq. (9), and substituting

into Eq. (15), we see that Lo # 0 in Eq. (14) only for w = w and

1%

k=k-k,,or ws= —(wl—w2 and k = —(glﬁgz) Therefore, with the
particular choice of gél) made in (18), the most general form of
gél)(zo,to,gl,tl,...) s, which is modified by transverse mode coupling, can

be written in the

Eél)(zo,t

where fc3 = -,EJ

form

o,3(_1,!:1,...) = E3(§1,t1,...) k3 cos(.l_g3 * X - w3to + ¢3)

+ E4(§1,tl,...) kg sin(ky * X = wgt + 93) (19)

s ky=k -k

k) -ky s wg=w)-wy,and &5 = ¢ -0,
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1 i(_lg_‘_}go-wto)
Multiplying Eq. (14) by T © and summing over k

and w , we obtain the following two equationms:

2 2
O v 3E 3, V 1) >
3 o] 3 1 3 0 3
—-f-+—_lg’——+—yE+E<——+—-li‘———A
8t1 wy 3 351 2 L3 4 Btl wy 3 83(_1
ew k
= (E, * E,) (20)
4mwlw2 1 2
and
2 2
z—fi+yu?9'53':—4 %YL <a¢3 %253'2;%"A=0’(21)
1 3 -1 e8]
20 1YL
where A and Y, are defined such that D (k3 3) = E; + —;— nv 0(e) Y

is the linear Landau damping decrement, and A is the '"detuning' factor to

0(e)

Eqs. (20) and (21) show that the longitudinal modes can be limited by
linear Landau damping, by "detuning'", and by the coupling between transverse

modes (which enter through the "slow" derivatives).

Since the presence of a collision term would introduce, in the linear
approximation, a damping decrement which plays a role analogous to that of the
Landau damping decrement, in the work below we replace Yy L by v [E(YL+YC)]

where Yo is the collisional damping decrement.
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If we fourier-analyze both (18) and (19), according to Eq. (9),
and substitute into Eq. (16), we obtain the following equations for El ,

Ez ’ ¢1 s and ¢2

5 + < (k ) a> E, = - E T ] ET (22)
— —_ = - — ] 4
atl wl 1 axl 1 4mw2 3 ki 2
—822 + 2-2- (k 2V - - E ——————*——(EZ ~E)% E (23)
= Ly T 7 A - L s
3t; w, 2 3x, 2 4mw, 3 k; 1_
00 2 90y eky k) - Epky . )
Else Ta & = Tme. Zu | Ep - 7
1 1 ES Rt} k] .
and
3¢ 2 3¢ > ek { (k. * E.)
2 c 2 3 =2 =1
E,l 57 +7 k, = E, |E, - —5— k . (25)
2<:3t1 wz 2 351 4mwl 4 1 k; 2
III. DEPENDENCE OF MODES ON x, and t;
A. CONSERVATION LAWS
2 2 vy
Let us notice that EI 'El s E;'EQ , and ;;-53 are, respectively,

the group velocities of the two transverse modes and the longitudinal mode. We

shall denote them by V

Yo 282 , and V

—g3
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If we eliminate the terms containing ¢3 from Eq. (20) with the aid
of Eq. (21), we can derive the following conservation equations from Eqs. (20),

(22) and (23):

g2 g2 g2 g2
d 1 2 d 1 2
e\, Ta )t T\ e Yty Y/ =0
1 1 2 25} 18 278
and _{ v (26)
2 2,2 I )
N E] (ES+E,) , B (ES4E))
3 | & Y e LT I S R FPR
1 1 3 RS 1 3
(E§+EZ)
+ v m =0
3 -

We will now seek to make the physical meaning of Eqs. (26) more explicit.
First we define U1 to be the average with respect to X, of the sum of the
electric, the magnetic, and the mechanical field energy demsities of the first
transverse wave, U2 to be the corresponding average for the second transverse

wave, and U3 to be the corresponding average for the longitudinal wave.

The average mechanical field energy density of the first wave is of

the form ia m g2 where u, satisfies the equation
2 0o "1/ av. =1

8le

321
I E) sinlky) = x, - ot + 4
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wz E2 E2 B2
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Therefore <2 n, m.yuy >av = 2 2 8r and Up =5\&r ¥ Bn
1
2 2 2152
+<l 2> -2l similarly U, =2 ang v, <L i
2 %" Y1 /av. T B mLiarty Y2 Tgr @ 32 8m

= s, Where ug satisfies the equation

+
(Y
3
o
g8
[=
"%
o
<
|
2]
W N
o| +
E RN <]
N

e
= - E3 cos(k3 X - w3t0 + ¢3)

1
|®

E, sinlky * x, - w3t + ¢3)

We now note that U1 s U2 , and U satisfy a set of equations identical

3

2 2 2
E by U2 , and (E3+E4) by U

with Eqs. (26), with E2 1 Ey

1 replaced by U

3 -
Ul
If we define Nl = o, to be the number density of quanta of both
1

U
modes of polarizations of the first transverse modes; N2<E -l-rw_2> , of the
2

U
second transverse mode; and N3<E §E§j> s the number density of quanta of the
3

longitudinal mode, then N1 s N2 and N3 satisfy the conservation equations:
L(N +N)+L- (NV . +NV ) =0
atl 1 2 351 1—-gl 2—g2

and > 27)
2N F N H . (N Vg, 4NV ) = oy N, .
at, 1" 737 T Bxy 1781 7 V32g3 3
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Eqs. (27) have a lucid interpretation in terms of a three-fluid model.
We have three fluids of quanta streaming with fluid velocities ygl s ygz , and
ng , respectively. Because of the nonlinear coupling of modes, the quanta
can be created and annihilated. Whenever a quantum of the higher-frequency
transverse mode is annihilated, its energy is shared between a lower-frequency
transverse quantum and a longitudinal quantum, which are simultaneously created;
and vice versa, whenever a higher-frequency transverse quanium is created, a
lower frequency transverse quantum and a longitudinal quantum are annihilated.
At the same time, there is a dissipation process which destroys the longitudinal

quanta and converts their energy into thermal energy.

6,12,13 in that

Equations (27) differ from those derived by Sturrock
they include the dissipation of the energy of the longitudinal mode by the

processes of Landau and collisional damping.

B. RELATIVE IMPORTANCE OF THE LIMITING MECHANISMS

We present here expressions for estimating the relative strengths
of the different mechanisms which limit the longitudinal mode. This is done
by taking each mechanism separately, assuming that it alone is present, and
estimating the strength of the longitudinal field. The most effective mech-
anism, in a particular situation, is the one which gives the smallest amplitude

of the longitudinal mode.
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Let kT s Wy s and E refer, respectively,to the characteristic

T

wavenumber, frequency, and amplitude of the transverse field (remember that

Op N CkT : and let kL and EL refer, respectively, to the wavenumber and

amplitude of the longitudinal field. Let ™ and AN be, respectively, the

time and spatial scales of variation due to mode-mode coupling.

Eq. (20)-(25), when written in dimensional form, become

2 N
Vk e w
1, %o LS 2
(T t T2y ¢ A)EL = Im 2 ET
N P N w
T
and > (28)
™ A 4ﬂmT L
J
For initial value problems
e w c
1 kL e _P. kL
- = E = (M E . (29)
™ AmwT L  4mc W w L
For boundary value problems
e w c
1 kL e P kL
= = == ) . (30)
AN 4mch EL 4ch Wy wp EL

When "detuning" is dominant,

2
w k ¢ E
-2 (P2 L, T
EL 4mc (w ) (wu ) A ? (31)
T P
and when damping is dominant,
2
c E
S-S X s A (32)
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( We have Y = \ + Yc . The Landau damping decrement, Yy » may be

written in the form

i
v, X me 2—%) G MU

mc
X exp [— %(ckL w;l)—Z (Vo/c)-z] .

The collision damping decrement, Yo 0 is given by14

3 ) e

oy 3 _ 2.k ; '
where A = §n n LD , with LD = (kBT/AN n e )* . Here kB is Boltzmann's

constant and T is the electron "temperature".)

When resonant mode-coupling effects are dominant, and we are doing a

pure initial value problem,

w_\}5
=(72 E, . (33)
\"1/ T

l.a

When resonant mode-coupling effects are dominant ', and we are doing

a pure boundary value problem,

AVEN AN
E, =<V;><w.r> (ckL E. - (34)

Eqs. (33) and (34) were obtained by neglecting y and A in Eqs. (28) and

then solving for EL and Ty OF AN .
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At this point we note that convective non-linearities may limit the

15,16

longitudinal mode by detuning , with an amplitude which can be written as:

EL N l:(mw);i c/Z:Il/3 E§/3(wp/w )2/3 ni/G/a1/3 . (35)

T

We have not derived this effect analytically since formally it is derived from

second order terms in the expansion of (3).
Since

c " 1
Ei x [1 + 4(wT/wp)2 sin’ (9/2)] s
X ‘

(with 8 the angle between the k vectors of the two transverse waves) by

-

means of Eqs. (29)-(35) one concludes that An and Ty are least for wp/wT
approaching one from,below.h Under these conditions ~CkL/wp N1 ThenwaQPHg.the
longitudinal limiting mechanisms, non-linear effects grow relgE;vely stronger as
E, and V;7c ‘increase, and as no' decreases.

We note that spatial resonant coupling limits the longitudinal mode
less effectively than temporal resonant coupling. In fact, the ratio of the

longitudinal field limited in time to that limited in space is proportional to

.V. %
<;éé><$>§kL) . Hence at zero temperature, spatial coupling is incapable of
P

limiting the longitudinal mode. This last fact can also be seen in the wotk of
Montgomery7 for a cold plasma, which does not yield solutions when only the
spatial nonlinearity due to resonant mode coupling is presumed to limit the

longitudinal mode.
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C. DETUNING IS DOMINANT

In this case we neglect the derivatives with respect to X and £
as well as the damping decrements in Eqs. (20) and (21). Since we fix the
phase angles for the two polarizations of each transverse wave in (18) to be the

same, we find that detuning alone is capable of limiting the longitudinal field

only when no rotations of E, and E, occur. Therefore in this section we

" R (k, xE))xk,
restrict ourselves to situations with -———7;———*—~ parallel to §1 and *————zr———-
k¢ k
1 2

parallel toiﬁé. The resultant équafibns leave us the option of doing a pure boundary

value problem, a bﬁre initial'value prbblem, or a mixed problem.
If we do a pure boundary value problem, we obtain the following
solution to Eqs. (20)-(25):
_E.l (351) = E]_ (£1=0) s

.E.z (lc.l) = EZ (.’_‘.1=0) ’

E;=0
I ewp|.1$3| .E]_ ¢ Ez 7 (36)
4 4mwlw2 A
2 .2 2
o = - e ky o (& - Ep e - x4 6 (x.0)
1 16 2 2 2k2 EZ A -1 1 1=1 ’
L 1
and
e TN
¢, = - ————=—L ————— k, * %X, + ¢,(x,=0) .
v T
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If we take gl parallel to <52 and gi parallel to EQ » our results are

essentially identical with those of Montgomery7.

Had we done a pure initial value problem instead of a pure boundary.

value problem, our results would have been:

§3 =0 ,
E _ ewp|kﬁ ECE
]
—4 4mw1w2 A
igu, E c B
4= - 7 2 €y + 0, (t4=0)
16m w, w E. A
172 1
and
figu, @ c B
o = - 75 ) t) + ¢,(ty=0)
16m w,w E. A
172 2

>

g (37

We see from Eqs. (36) and (37) that the effects of mode-mode coupling

can be interpreted to produce '"wave-number shifts'" in the case of a pure

boundary value problem, and "frequency shifts" in the case of a pure initial

value problem.
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D. DAMPING IS DOMINANT

In this case we neglect the "slow" derivatives and the "detuning"

terms in Egs. (20) and (21). We‘immédiately obtain that E, = 0 and
ew k, (E, * E,)
- p 3 =1 =2 17
E, . Y . Because of Eqs. (24) and (25), ¢, and ¢,

172

may be taken to be constants.

To simplify the mathematics, let us take 51 parallel to ‘52 and

pointing in the direction of the positive x-axis, and let us do a one~dimensional
problem., We again have the option of doing an initial value or a boundary value

problem; we shall do a boundary value problem. Let E., = Eq(xl=0) and

10
Ep = g&(xl=0) . Two cases will be treated: (1) £ parallel to E,.,
and (2) Eo not parallel to Exp -
In this case there is no rotation of the directions of polarizationm.
From Eqs. (20), (22), (23) and (26) we obtain the equations
2,2 2 n
BEl _ e ‘k3 w E1E2
dx, o222 . ¥y »
1 8m ¢ wzkl.
3E e2 k2 w E2E
2 3 p 172 >
= > (38)
9x 222 Y
1 8m c w1k2
and
2 2 2 2
ME L KR MFi0 | Kofao
2 2 2
“1 “2 “1 “2
.
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Eqs. (38) can be easily integrated, and have the solution 3
2 2
kB0 . kEs0
g2 2 2
1 1 )
2 = 2 2
Ejo %E10 .\ kEop  2Mx
2 2 e
w1 )
and S (39)
2 2
580 kB0
+
E2 w w
2 1 2
2 = 2 2 ’
B0 kiEjg  "2hxp KBy
e +
u)z wz
1 2
2 2 2 2
e w kg K E0 kE50
where A= +
8 2c2k k.Y wz
m e X% 1 )

The solution (39) shows that, as x - < , the higher-frequency transverse mode -
and hence the longitudinal mode - is completely attenuated, and only the lower-

frequency transverse mode remains.
Case (2):
Here we select E

10 and E,p s0 that they form some arbitrary angle.

It is convenient to rewrite Eqs. (22) and (23) such that multiplicative

constants do not appear explicitly. For this purpose, we define two vectors,
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u and v , in the following way:

[
I

=\ g 222 =2

e2 w k§ s e2 w kg %
—_L. gl R and X = —__.._La_ E
8m ¢ wlsz

222
8m ¢ wzkly

Eqs. (20)-(23) can, therefore, be written in the form

F\
du
7 v v
and > (40)
2o oa@w
axl
Eqs. (40) yield the conservation equations
-
u_ + v2 = u2 + v2
yo yo
> (41)
u +v_ = u2 + v2 .
Z0 z0 J

The form of Eqs. (41) suggests that we parametrize Eqs. (4Q) in the

following manner:

Let u = (u2 + v2 )% cos 8 ,
y yo yo
v_ = (u2 + v2 )% sin 8 ,
y yo yo
2 2 ( (42)
u, = (uzo + vzo) cos 87 ,
and
v = (u2 + v2 );i sin 67 .
z zo Z0
J
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du

Evaluating EEX from Eqs. (40), then from Eqs. (42), then equating
z

the two expressions and integrating, we obtain

8" = 06 + B s (43)

where B = 9; -8 6; and eo being the values of 6° and 6, respectively,

[o}

at x, = 0 . Defining three new quantities, ¢ , A , and o by

¢ = 20+ 0+ W ,

2

_if,2 2 2 2, 272 2.2 .2,k
A= {[}uyo + Vyo) + (u,  + vzo) cos B] + (u,  + v,,) sin” 28] R

(u2 + v2 ) + (u2 + v2 ) cos 2B ? (44)
- yo yo z0 4s)
cos o = n >
and
2 2
i (uZo + vzo) sin 28
sin o = A R
.y
Eqs. (40) reduce to only one equation,
2~ A sing . (45)
1
N —Axl ¢(x1=0)
Eq. (45) has the solution tan > =e tan —5—— But this implies that,
when x> , u - v=- %-sin ¢ =0, and §1 and g& become perpendicular to

one another. The asymptotic values of the fields follow from (42) and (44).
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We see from cases (1) and (2) that the characteristic length for the
higher frequency transverse wave being damped out, or the polarizations of the
two transverse waves rotating until they are perpendicular, is 1/A . Had we
done a pure initial value problem, we would have obtained an analogous behavior
of the waves in time, with the characteristic time 1/A , where A is given
by Eq. (44), but u and v are given by

e2w k§ ¢
u = —E&—= E
= 8 2w2 =1
m W W, Y

and

<
]
N
(']
N N
FE
N
»
w N
te
=

8m wlmzy

E. RESONANT MODE COUPLING

In this case we neglect the detuning and the damping terms in Eqgs.

(20) and (21).

It can be shown that the fields are limited in time and in space.
For example, in the case of a puyre initial value problem, we obtain from Egs.
(27) that (Nl(tl) + Nz(cl)) = (Nl(tl=0) + N2(t1=0)) and (Nl(tl) + N3(t1))

= (Nl(t1=0) + N3(t1=0)) . Since N N2 , and N3 are finite at t, =0,

1 1

they must be finite for t, > 0.



- 30 -

In the case of a pure boundary value problem the argument is more
difficult. However, if we restrict ourselves to one-dimensional situations,
with-kl’ 32 and 53 parallel to one another, we obtain from Eqs. (27) that

(Nl(xl)vgl + NZ(xl)VgZ) = (Nl(x1=0)vgl + N2(xl=O)ng) and (Nl(xl)Vgl

+ N3(x17Vg3) = (Nl(x1=0)Vgl + N3(x1=0)Vg3) . Since Nl » N, and N3 are

finite at - X = 0 , they must be finite for X > 0.

We shall now do several pure boundary value problems. We shall assume

that E3 = E4 = 0 on the boundary. It can be seen from Egs. (20)-(25) that

only E_. can be built up from zero as we move away from the boundary, while

3

E4 remains zero. Hence ¢l and ¢2 remain constant inside the plasma,
and we have to solve only Eqs. (20), (22) and (23) for each boundary value

problem.

To simplify the mathematics, let us define new field variable u ,

v, and w by W
e2 w2 k s
p 3
222 2
16m ¢ wlszo

[

(46)

I<
11

and

lém ¢ klk2
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Let us also take k., and k, to be parallel or "almost" parallel to each other
.51 =2 P P ‘

and to point in the positive x-direction. Let and v, be the constant

u
1
values of u and v specified on the plane x =0 . Egqs. (20), (22) and (23)

then become h

— = w2 o (47)

and

|
le
<

Eqs. (47) yield the conmservation equations (41). They can be para-
metrized by means of Eqs. (42), with the relationship between 6 and 6~ being

given by Eq. (43). If we also make use of the definitions (44), Egs. (47)

will reduce to the form ~
32— = 2w
oxl
and > (48)
k
=3 ow 1
—~ ¢e+— 4+ S Asin¢ =0
k3 85_1 2
o
Case (1):

ky is parallel to k, and k, . We let W(x1=0) =0 and

& = 06(x, = 0) . In this case Egs. (48) yield the equation

o 1
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S

+ A sin ¢ = 0 . (49)

Y
o
=N

Eq. (49) can be integrated to give

k2

$/2
d(¢/2)

¢(xl-0) V/;inz %-¢(x =0) - sin2
J 2 l

=1Ax‘

NA_O—‘

If we define the number k , with |k| < 1 , by the equation

= sin2 L ¢(x,=0) = c082(6 +-2) , then, by means of the substitution
2 1 o 2

gin ¢ =-% sin % » the integration of Eq. (49) can be written in the form

¢

Jj o /1- kzsin2¢

ae P do

= + /i X, + Kk vwhere « = J , an
° yY1- kzsin2¢

18

elliptic integral of the first kind .

Therefore u , v, and w can be expressed in terms of elliptic

functions:18

and

2 2 4k & n(/R S anc/k

uy - (uyo + vyo) [? cos 3 sn(vA x, + Kyk) + sin 2 dn(vA X + K,k)],
2 2 .k a a Y/

vy = (uyo + vyo) [cos 0 dn(vA X + k,k) - k sin 3 sn(YA X, + K,k)],

(u2 + v:o);i Ec cos(% - B) sn (VA Xy + kK,k) + sin(-;-l - B) dn(vA Xy + K,kﬁ,

c
[

Z 20

2
g = (U

<
[

o + vio);i [cos(% - B) dn(VA X + ky,k) - k sin(% - B) sn(YA X + oc,k):l .

»(50

we=-k/A en(/R X + k,k) .




Eqs.(50) show that the amplitudes of the modes are oscillatory functions of x

obtain results which are identical with Eq.

- 33 -

1°

In the case of a one-dimensional pure initial value problem we would

t1 ; the u, v, and w defined by

and the u
-0

and v
-0

e
[

i<
i

being

the values of

Case (2

L

(50); but with =x

and v at

t

1

=0.

replaced by

(E3(tl=0) = 0).

We consider the special two dimensional situation of Diagram 1.

> 8

D D

C

c

(o4
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The resonant plasma region boundaries on the horizontal lines

oa”

The lines AD” and BC” , both parallel to -Eill-Eﬂ-’ denote the bounds

and BBR”.

of the region within which the mode (wl,El) is localized. The lines AD and

BC bear a similar relation with respect to the mode (mz,ﬁé)

[y x k|

<< 1
T T, ’

oE
L 3_1_ (x=d)
Cay T

E, (y=0)

ok

1
L 3 (x=0)

E, (y=0)

On using (20) and (22), conditions (53) and (54) become
ew_k w ek |k, x k|
p 3 3 3 1 E.E.L 1 2. . 1
<4mm1w2V§ k3> <4mw3c2 k1 172 lk1| Ik2|

e w k3 w3 ek3 wl N
—Pr = = — E.E.D = 1
2 k 2 k 172
4mw, w,V 3 4mw,c 1

1720 3

I €

We assume

(51)

(52)

(53)

(54)

(55)

(56)
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Inequality (56) insures the occurrence of mode coupling effects in the

volume of diagram 1.

In view of (56) we may look for solutioms to Eqs. (48) of the form

¢ = ¢$(£) , where & = (4A xlyl);5 With this substitution, Eqs. (48) becomes
d2¢ 1 de¢
+ = 4+ sin ¢ =0 . (57)
d&z g dg

| Eq. (57) is difficult to solve. However, we can get some idea of
the behavior by considering small values of ¢O (E¢(xl=0,yl=0)) . Then

sin ¢ ¥ ¢ , and the solution of Eq. (57) is of the form ¢ = °, JO(E) for
£ << (¢ )_2 . Here JO(E) is the Bessel function of the first kind of order

o)

zero, so that ¢ is an oscillating function of & which approaches zero for

E>> 1.

Theggestriction that ¢ be small implies that if u is parallel to

Y, » |E¢| is taken to be small; however, when u, is not parallel to Y, s
u, and v, can have arbitrary magnitudes, but have to be almost perpendicular.

The asymptotic limit of ¢ implies that w(&+») =0 ; also u(&+) = 0

when u_  1is parallel to v, and u * v =0 when u_ is not parallel to v
—o -0 = = ~o -0
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CONCLUSIONS

We have established the connection between Sturrock's mode-coupling
equations6 which were derived by means of a derivative expansion technique,
and the quasi-linear solution of the non-linear Vlasov equation and Maxwell's
equations, generalizing the former to include dissipation, finite temperature
and spatial variation effects. For the system of two transverse modes and
the resulting driven longitudinal mode we have determined and treated non-linear
frequency conversion and polarization rotation effects. We note that in the
absence of detuning and damping limitations, for problems involving a single
coordinate there is a characteristic evolution which is basically oscillatory in
that it is describable in terms of elliptic functions; whereas even for a
relatively simple two-dimensional problem the evolution of the transverse modes
is characterized by an oscillation of decreasing magnitude which tends towards
the same limit as when damping alone controls the longitudinal oscillationms.
From an experimental viewpoint the mode coupling effects are optimized by the
choice of (wp/wT) of order unity.
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